4.8 Article

Elastic properties of 2D colloidal crystals from video microscopy

Journal

PHYSICAL REVIEW LETTERS
Volume 90, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.90.155506

Keywords

-

Ask authors/readers for more resources

Elastic constants of two-dimensional (2D) colloidal crystals are determined by measuring strain fluctuations induced by Brownian motion of particles. Paramagnetic colloids confined to an air-water interface of a pendant drop are crystallized under the action of a magnetic field, which is applied perpendicular to the 2D layer. Using video microscopy and digital image processing we measure fluctuations of the microscopic strain obtained from random displacements of the colloidal particles from their mean (reference) positions. From these we calculate system-size dependent elastic constants, which are extrapolated using finite-size scaling to obtain their values in the thermodynamic limit. The data are found to agree rather well with zero-temperature calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available