4.6 Article

Substrate-induced conformational, changes in the transmembrane segments of human P-glycoprotein - Direct evidence for the substrate-induced fit mechanism for drug binding

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 16, Pages 13603-13606

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C300073200

Keywords

-

Funding

  1. NCI NIH HHS [CA80900] Funding Source: Medline

Ask authors/readers for more resources

The human multidrug resistance P-glycoprotein (Pgp, ABCB1) is quite promiscuous in that it can transport a broad range of structurally diverse compounds out of the cell. We hypothesized that the transmembrane (TM) segments that constitute the drug-binding site are quite mobile such that drug binding occurs through a substrate-induced fit mechanism. Here, we used cysteine-scanning mutagenesis and oxidative cross-linking to test for substrate-induced changes in the TM segments. Pairs of cysteines were introduced into a Cys-less P-gp and the mutants treated with oxidant (copper phenanthroline) in the presence or absence of various drug,substrates. We show that cyclosporin A promoted cross-linking between residues P350C(TM6)/G939C(TM11), while colchicine and demecolcine promoted cross-linking between residues P350C(TM6)/V991C(TM12). Progesterone promoted. cross-linking between residues P350C(TM6)/A935C(TM11), P350C(TM6)/G939C(TM11), as well as between residues P350C(TM6)/V991C(TM12). Other substrates such as vinblastine, verapamil, cis-(Z)-flupenthixol or trans-(E)-flupenthixol did not induce cross-linking at these sites. These results provide direct evidence that the packing of the TM segments in the drug-binding site is changed when P-gp binds to a particular substrate. The induced-fit mechanism explains how P-gp can accommodate a broad range of compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available