4.5 Article Proceedings Paper

Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped Fiber Bragg grating

Journal

APPLIED OPTICS
Volume 42, Issue 12, Pages 2188-2197

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.42.002188

Keywords

-

Categories

Funding

  1. Engineering and Physical Sciences Research Council [GR/S42071/01] Funding Source: researchfish

Ask authors/readers for more resources

The thermal decay of a type I fiber Bragg grating written at 248 run in boron-germanium. codoped silica fiber was examined in terms of its reflectivity and Bragg wavelength change. In addition to the,decay in reflectivity, which was observed, a shift in Bragg wavelength over the temperature range considered was seen. A mechanism for the decay in the reflectivity was developed and modeled according to a power law, and the results were compared with those from the aging curve approach. The wavelength shift was simulated-by modification of the power law, which was also found to fit well to the experimental data. Temperature-induced reversible and irreversible changes in the grating characteristics were observed and considered to be a means to predict the working lifetime of the grating at comparatively low temperatures. Accelerated aging was also reviewed and compared in terms of reflectivity and Bragg wavelength shift. It was shown that the temperature-induced irreversible shift in the Bragg wavelengths could not be predicted by use of the isothermal decay of the refractive-index modulation. The results were discussed within the framework of the current theoretical approaches for predicting the stability of gratings of this type. (C) 2003 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available