4.5 Article Proceedings Paper

Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements

Journal

APPLIED OPTICS
Volume 42, Issue 12, Pages 2021-2030

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.42.002021

Keywords

-

Categories

Ask authors/readers for more resources

Laser-induced-incandescence (LII) signal decays are measured in sooting premixed atmospheric and low-pressure flames. Soot particle temperatures are obtained from LII signals measured at two wavelengths. Soot particle size distributions P(r) and flame temperatures T are measured spatially resolved by independent techniques. Heat and mass transfer kinetics of the LII process are determined from measured soot particle temperatures, flame temperatures, and particle sizes. Uncertainties of current LII models are attributed to processes during the absorption of the laser pulse. Implications for LII experiments are made in order to obtain primary soot particle sizes. Soot particle size distributions and flame temperatures are assessed from measured particle temperature decays by use of multi-D nonlinear regression. (C) 2003 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available