4.4 Article

Structure and stability of Fe3C-cementite surfaces from first principles

Journal

SURFACE SCIENCE
Volume 530, Issue 1-2, Pages 87-100

Publisher

ELSEVIER
DOI: 10.1016/S0039-6028(03)00352-2

Keywords

density functional calculations; steel; corrosion; surface energy; iron; carbides

Ask authors/readers for more resources

We report results of gradient-corrected pseudopotential-based density functional theory calculations on bulk Fe3C in the cementite structure and its (001), (110), (011), (100), (101), (010), and (111) surfaces. Bulk properties are in reasonable agreement with available experimental data. The cementite local density of states shows predominantly metallic character, along with some polar covalent bonding contributions (charge transfer from iron to carbon) for both bulk and surfaces. We predict cementite surface energies in the range of 2.0-2.5 J/m(2), most of which are lower than all pure Fe surface energies. In particular, we predict the Fe3C (001) surface to be the most stable and the Fe3C (10 0) surface to be the least stable. We show that greater stability is associated with localized Fe-C bonding at the surface, smoother surfaces created, e.g., by large C atom relaxation into the bulk, and more uniform coordination at the surface. The relatively greater stability of Fe3C surfaces is suggested to provide the driving force for cementite to form at the surfaces of bcc iron. Implications for the carburization erosion mechanism for steel, such as cracking and melting, are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available