4.7 Article Retracted Publication

被撤回的出版物: Metabolic profiling of root exudates of Arabidopsis thaliana (Retracted Article. See vol 57, pg 9346, 2009)

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 51, Issue 9, Pages 2548-2554

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf021166h

Keywords

Arabidopsis thaliana; Brassicaceae; butanoic acid; trans-cinnamic acid; o-coumaric acid; p-coumaric acid; ferulic acid; p-hydroxybenzamide; methyl p-hydroxybenzoate; 3-indolepropanoic acid; syringic acid; vanillic acid; elicitation

Ask authors/readers for more resources

In addition to accumulating biologically active chemicals, plant roots continuously produce and secrete compounds into their immediate rhizosphere. However, the mechanisms that drive and regulate root secretion of secondary metabolites are not fully understood. To enlighten two neglected areas of root biology, root secretion and secondary metabolism, an in vitro system implementing root-specific elicitation over a 48-day time course was developed. After roots of Arabidopsis thaliana had been elicited with salicylic acid, jasmonic acid, chitosan, and two fungal cell wall elicitors, the secondary metabolites subsequently secreted were profiled. High-performance liquid chromatography was used to metabolically profile compounds in the root exudates, and 289 possible secondary metabolites were quantified. The chemical structures of 10 compounds were further characterized by (1)H and (13)C NMR: butanoic acid, trans-cinnamic acid, o-coumaric acid, p-coumaric acid, ferulic acid, P-hydroxybenzamide, methyl p-hydroxybenzoate, 3-indolepropanoic acid, syringic acid, and vanillic acid. Several of these compounds exhibited a wide range of antimicrobial activity against both soil-borne bacteria and fungi at the concentration detected in the root exudates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available