4.7 Review

Polyphosphoesters in drug and gene delivery

Journal

ADVANCED DRUG DELIVERY REVIEWS
Volume 55, Issue 4, Pages 483-499

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-409X(03)00040-1

Keywords

biodegradable polymers; polyphosphoester; DNA; chemotherapeutic agents; sustained release; gene delivery

Funding

  1. NCI NIH HHS [P01CA79862] Funding Source: Medline

Ask authors/readers for more resources

Polymers with repeating phosphoester bonds in the backbone are structurally versatile, and biodegradable through hydrolysis, and possibly enzymatic digestion at the phosphoester linkages under physiological conditions. These biodegradable polyphosphoesters are appealing for biological and pharmaceutical applications because of their potential biocompatibility and similarity to bio-macromolecules such as nucleic acids. In the first part of this review, we will focus on one particular structure synthesized by extending oligomeric lactide prepolymers with ethylphosphate groups. This amorphous to semi-crystalline polymer is promising in delivering anti-cancer therapeutics in the form of microspheres. In the second half, we will discuss the conjugation of charged groups to the side chain of the phosphate, constituting one of the few biodegradable cationic polymers in the field for non-viral gene delivery. Capable of delivering exogenous genes to a cell nucleus or providing an extracellular sustained release of DNA, these cationic polyphosphoesters also serve as a valuable model to understand the important characteristics that render a polymer an effective gene carrier. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available