4.6 Article

Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 17, Pages 14996-15000

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M211753200

Keywords

-

Ask authors/readers for more resources

Imprinted genes in mammals are often located in clusters whose imprinting is subject to long range regulation by cis-acting sequences known as imprinting centers (ICs). The mechanisms by which these ICs exert their effects is unknown. The Prader-Willi syndrome IC (PWS-IC) on human chromosome 15 and mouse chromosome 7 regulates imprinted gene expression bidirectionally within an similar to2-megabase region and shows CpG methylation and histone H3 Lys-9 methylation in somatic cells specific for the maternal chromosome. Here we show that histone H3 Lys-9 methylation of the PWS-IC is reduced in mouse embryonic stem (ES) cells lacking the G9a histone H3 Lys-9/Lys-27 methyltransferase and that maintenance of CpG methylation of the PWS-IC in mouse ES cells requires the function of G9a. We show by RNA fluorescence in situ hybridization (FISH) that expression of Snrpn, an imprinted gene regulated by the PWS-IC, is biallelic in G9a -/- ES cells, indicating loss of imprinting. By contrast, Dnmt1 -/- ES cells lack CpG methylation of the PWS-IC but have normal levels of H3 Lys-9 methylation of the PWS-IC and show normal monoallelic Snrpn expression. Our results demonstrate a role for histone methylation in the maintenance of parent-specific CpG methylation of imprinting regulatory regions and suggest a possible role of histone methylation in establishment of these CpG methylation patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available