4.8 Article

Current detection of superradiance and induced entanglement of double quantum dot excitons

Journal

PHYSICAL REVIEW LETTERS
Volume 90, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.90.166802

Keywords

-

Ask authors/readers for more resources

We propose to measure the superradiance effect by observing the current through a semiconductor double-dot system. An electron and a hole are injected separately into one of the quantum dots to form an exciton and then recombine radiatively. We find that the stationary current shows oscillatory behavior as one varies the interdot distance. The amplitude of oscillation can be increased by incorporating the system into a microcavity. Furthermore, the current is suppressed if the dot distance is small compared to the wavelength of the emitted photon. This photon trapping phenomenon generates the entangled state and may be used to control the emission of single photons at predetermined times.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available