4.8 Article

Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1

Journal

EMBO JOURNAL
Volume 22, Issue 9, Pages 2245-2254

Publisher

WILEY
DOI: 10.1093/emboj/cdg216

Keywords

cell cycle checkpoint; hMLH1; methylating agent; mismatch repair; TetOff

Ask authors/readers for more resources

The mismatch repair (MMR) gene hMLH1 is mutated in similar to50% of hereditary non-polyposis colon cancers and transcriptionally silenced in similar to25% of sporadic tumours of the right colon. Cells lacking hMLH1 display microsatellite instability and resistance to killing by methylating agents. In an attempt to study the phenotypic effects of hMLH1 downregulation in greater detail, we designed an isogenic system, in which hMLH1 expression is regulated by doxycycline. We now report that human embryonic kidney 293T cells expressing high amounts of hMLH1 were MMR-proficient and arrested at the G(2)/M cell cycle checkpoint following treatment with the DNA methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while cells not expressing hMLH1 displayed a MMR defect and failed to arrest upon MNNG treatment. Interestingly, MMR proficiency was restored even at low hMLH1 concentrations, while checkpoint activation required a full complement of hMLH1. In the MMR-proficient cells, activation of the MNNG-induced G(2)/M checkpoint was accompanied by phosphorylation of p53, but the cell death pathway was p53 independent, as the latter polypeptide is functionally inactivated in these cells by SV40 large T antigen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available