4.2 Article

Effects of Parkinson's disease on visuomotor adaptation

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 150, Issue 1, Pages 25-32

Publisher

SPRINGER
DOI: 10.1007/s00221-003-1403-y

Keywords

kinematic distortion; internal model; basal ganglia; sensorimotor learning

Categories

Funding

  1. NIA NIH HHS [AG019148-01] Funding Source: Medline

Ask authors/readers for more resources

Visuomotor adaptation to a kinematic distortion was investigated in Parkinson's disease (PD) patients and age-matched controls. Participants performed pointing movements in which the visual feedback of hand movement, displayed as a screen cursor, was normal (pre-exposure condition) or rotated by 90degrees counterclockwise (exposure condition). Aftereffects were assessed in a post-exposure condition in which the visual feedback of hand movement was set back to normal. In pre- and early-exposure trials, both groups showed similar initial directional error (IDE) and movement straightness (RMSE, root mean square error), but the PD group showed reduced movement smoothness (normalized jerk, NJ) and primary submovement to total movement distance ratios (PTR). During late-exposure the PD subjects, compared with controls, showed larger IDE, RMSE, NJ, and smaller PTR scores. Moreover, PD patients showed smaller aftereffects than the controls during the post-exposure condition. Overall, the PD group showed both slower and reduced adaptation compared with the control group. These results are discussed in terms of reduced signal-to-noise ratio in feedback signals related to increased movement variability and/or disordered kinesthesia, deficits in movement initiation, impaired selection of initial movement direction, and deficits in internal model formation in PD patients. We conclude that Parkinson's disease impairs visuomotor adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available