4.7 Article

Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris

Journal

MOLECULAR ECOLOGY
Volume 12, Issue 5, Pages 1195-1206

Publisher

WILEY
DOI: 10.1046/j.1365-294X.2003.01826.x

Keywords

bud set date; phytochrome; nucleotide diversity; latitudinal cline; photoperiod; Pinus sylvestris

Ask authors/readers for more resources

Forest tree species provide many examples of well-studied adaptive differentiation, where the search for the underlying genes might be possible. In earlier studies and in our common conditions in a greenhouse, northern populations set bud earlier than southern ones. A difference in latitude of origin of one degree corresponded to a change of 1.4 days in number of days to terminal bud set of seedlings. Earlier physiological and ecological genetics work in conifers and other plants have suggested that such variation could be governed by phytochromes. Nucleotide variation was examined at two phytochrome loci (PHYP and PHYO, homologues of the Arabidopsis thaliana PHYB and PHYA , respectively) in three populations: northern Finland, southern Finland and northern Spain. In our samples of 12-15 sequences (2980 and 1156 base pairs at the two loci) we found very low nonsynonymous variation; pi was 0.0003 and 0.0002 at PHYP and PHYO loci, respectively. There was no functional differentiation between populations at the photosensory domains of either locus. The overall silent variation was also low, only 0.0024 for the PHYP locus. The low estimates of silent variation are consistent with the estimated low synonymous substitution rates between Pinus sylvestris and Picea abies at the PHYO locus. Despite the low level of nucleotide variation, haplotypic diversity was relatively high (0.42 and 0.41 for fragments of 1156 nucleotides) at the two loci.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available