4.3 Article Proceedings Paper

In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-583X(02)01896-7

Keywords

radioactive isotope beams; in-flight RI-beam facilities in Japan; RIKEN-RIPS; RIKEN-BigRIPS; in-flight fission; tandem fragment separator; large acceptance; superconducting quadrupoles

Ask authors/readers for more resources

Presented are features of the in-flight radioactive isotope (RI) beam separators in Japan as well as of a next-generation separator BigRIPS being built at RIKEN for the RI-beam factory project. Characteristic features and present status of the existing separators are reviewed for the RIPS at RIKEN, the Secondary Beam Line at RCNP, the Secondary Beam Course at NIRS, the CRIB at CNS and the RMS at JAERI. Design features are outlined for the BigRIPS, which is characterized by two major features: large acceptances and a tandem (or two-stage) separator scheme. The large acceptances allow one to produce RI beams efficiently by using in-flight fission of uranium ions, being achieved by using superconducting quadrupoles with a large aperture. The tandem separator scheme allows one to deliver tagged RI beam. The integrated capability of the BigRIPS and the accelerators of the project can significantly enlarge the scope of future RI-beam experiments. A low-energy course following the BigRIPS can provide energy-degraded and -bunched RI beams to be applied for a gas catcher system with an RF ion guide, aiming at realizing a projectile fragmentation based ISOL system. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available