4.7 Article

Iron transport by Nramp2/DMT1:: pH regulation of transport by 2 histidines in transmembrane domain 6

Journal

BLOOD
Volume 101, Issue 9, Pages 3699-3707

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2002-07-2108

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI35237-08] Funding Source: Medline

Ask authors/readers for more resources

Mutations at natural resistance-associated macrophage protein 1 (Nramp1) impair phagocyte function and cause susceptibility to infections while mutations at Nramp2 (divalent metal transporter 1 [DMT1]) affect iron homeostasis and cause severe microcytic anemia. Structure-function relationships in the Nramp superfamily were studied by mutagenesis, followed by functional characterization in yeast and in mammalian cells. These studies identify 3 negatively charged and highly conserved residues in transmembrane domains (TM) 1, 4, and 7 as essential. for cation transport by Nramp2/DMT1. The introduction of a charged residue (Gly185Arg) in TM4 found in the naturally occurring microcytic anemia mk (mouse) and Belgrade (rat) mutants is shown to cause a partial or complete loss of function in mammalian and yeast cells, respectively. A pair of mutation-sensitive and highly conserved histidines (His267, His272) was identified in TM6. Surprisingly, inactive His267 and His272 mutants could be rescued by lowering the pH of the transport assay. This indicates that His267/His272 are not directly involved in metal binding but, rather, play an important role in pH regulation of metal transport by Nramp proteins. (C) 2003 by The American Society of Hematology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available