3.9 Article

Pituitary corticotroph ontogeny and regulation in transgenic zebrafish

Journal

MOLECULAR ENDOCRINOLOGY
Volume 17, Issue 5, Pages 959-966

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2002-0392

Keywords

-

Funding

  1. NCI NIH HHS [R01-CA-75979] Funding Source: Medline
  2. NCRR NIH HHS [R01-RR-13227] Funding Source: Medline

Ask authors/readers for more resources

We characterized zebrafish proopiomelanocortin (POMC) gene promoter, and sequence analysis revealed that the promoter contains regulatory elements conserved among vertebrate species. To monitor the ontogeny of the pituitary POMC lineage in living vertebrates, we generated transgenic zebrafish expressing green fluorescent protein (GFP) driven by the POMC promoter. Zebrafish POMC-GFP is first expressed asymmetrically as two bilateral groups of cells most anterior to the neural ridge midline at 18-20 h post fertilization (hpf). POMC-GFP-positive cells then fuse into a single-cell mass within the pituitary anlage after 24 hpf and subsequently organize as distinct anterior and posterior domains between 48 and 64 hpf. Immunohistochemical studies with ACTH and alphaMSH antisera showed that POMC-GFP was mainly targeted to both anterior and posterior pituitary corticotrophs, whereas posterior pituitary region melanotrophs did not express GFP. To determine in vivo zebrafish corticotroph responses, dexamethasone (10(-5) m) was added to We embryos, which selectively suppressed POMC-GFP expression in the anterior group of corticotrophs, suggesting a distinct domain that is responsive to glucocorticoid feedback. Transgenic zebrafish with specific POMC-GFP expression in pituitary corticotrophs offers a powerful genetic system for in vivo study of vertebrate corticotroph lineage development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available