4.2 Article

Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch

Journal

JOURNAL OF CRANIOFACIAL SURGERY
Volume 14, Issue 3, Pages 340-347

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00001665-200305000-00012

Keywords

bioreactor; mechanical conditioning; longitudinal strain; tissue engineering

Categories

Ask authors/readers for more resources

Arterial growth during embryonic vascular development is associated with longitudinal strain. The longitudinal strain is an important element of the embryonic vascular mechanical environment (EVME). Thus, a perfusion bioreactor for vascular tissue engineered constructs must include the functional capacity for longitudinal strain. To accomplish this goal, a perfusion bioreactor with the capacity for longitudinal strain was developed. The bioreactor includes two media perfusion systems: one for the inside perfusion and one for the outside perfusion of the cardiovascular engineered tubular construct (CETC). The watertight perfusion chamber allows periodic changing of longitudinal strain of the construct during mechanical conditioning. The range of the longitudinal strain is 0% to 200%. The biomechanical properties of the CETC are controlled by a pressure transducer and a digital TV camera. The pressure transducer and TV camera are connected to a computer. This allows the recording of a relationship between the radius of the VTEG and pressure in both static and dynamic regimens. This bioreactor can perform biomechanical conditioning with longitudinal strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available