4.2 Article

Mimicry: developmental genes that contribute to speciation

Journal

EVOLUTION & DEVELOPMENT
Volume 5, Issue 3, Pages 269-280

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1525-142X.2003.03034.x

Keywords

-

Ask authors/readers for more resources

Despite renewed interest in the role of natural selection as a catalyst for the origin of species, the developmental and genetic basis of speciation remains poorly understood. Here we describe the genetics of Mullerian mimicry in Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), sister species that recently diverged to mimic other Heliconius. This mimetic shift was a key step in their speciation, leading to pre- and postmating isolation. We identify 10 autosomal loci, half of which have major effects. At least eight appear to be homologous with genes known to control pattern differences within each species. Dominance has evolved under the influence of identifiable modifier loci rather than being a fixed characteristic of each locus. Epistasis is found at many levels: phenotypic interaction between specific pairs of genes, developmental canalization due to polygenic modifiers so that patterns are less sharply defined in hybrids, and overall fitness through ecological selection against nonmimetic hybrid genotypes. Most of the loci are clustered into two genomic regions or supergenes, suggesting color pattern evolution is constrained by preexisting linked elements that may have arisen via tandem duplication rather than having been assembled by natural selection. Linkage, modifiers, and epistasis affect the strength of mimicry as a barrier to gene flow between these naturally hybridizing species and may permit introgression in genomic regions unlinked to those under disruptive selection. Mullerian mimics in Heliconius use different genetic architectures to achieve the same mimetic patterns, implying few developmental constraints. Therefore, although developmental and genomic constraints undoubtedly influence the evolutionary process, their effects are probably not strong in comparison with natural selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available