4.5 Article

Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle

Journal

JOURNAL OF ENDOCRINOLOGY
Volume 177, Issue 2, Pages 235-241

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1677/joe.0.1770235

Keywords

-

Ask authors/readers for more resources

Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of type 2 diabetes. A rat model of maternal protein restriction has been used to investigate the mechanistic basis of this relationship. This model causes insulin resistance and diabetes in adult male offspring. The aim of the present study was to determine the effect of early growth restriction on muscle insulin action in late adult life. Rats were fed either a 20% or an isocaloric 8% protein diet during pregnancy and lactation. Offspring were weaned onto a 20% protein diet and studied at 15 months of age. Soleus muscle from growth restricted offspring (LP) (of dams fed 8% protein diet) had similar basal glucose uptakes compared with the control group (mothers fed 20% protein diet). Insulin stimulated glucose uptake into control muscle but had no effect on LP muscle. This impaired insulin action was not related to changes in expression of either the insulin receptor or glucose transporter 4 (GLUT 4). However, LP muscle expressed significantly less (P<0(.)001) of the zeta isoform of protein kinase C (PKC zeta) compared with controls. This PKC isoform has been shown to be positively involved in GLUT 4-mediated glucose transport. Expression levels of other isoforms (betaI, betaII, epsilon, theta) of PKC were similar in both groups. These results suggest that maternal protein restriction leads to muscle insulin resistance. Reduced expression of PKC zeta may contribute to the mechanistic basis of this resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available