4.2 Article

Evidence for fine-scale natal homing among island beach spawning sockeye salmon, Oncorhynchus nerka

Journal

ENVIRONMENTAL BIOLOGY OF FISHES
Volume 67, Issue 1, Pages 77-85

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1024436632183

Keywords

salmonids; population differentiation; morphology; age composition; microsatellite DNA

Ask authors/readers for more resources

Salmonid fishes aggregate for breeding at spatially defined, suitable habitats. These aggregations may evolve into discrete populations when precise natal homing leads to reproductive isolation, and local regimes of selection lead to adaptation. Population structure is often defined by persistent differences in selectively neutral genetic markers and in mean values of morphological and life-history traits between locations. This approach is limited by the spatial scale at which traits diverge; low levels of reproductively successful straying, combined with similar selective pressures on life-history traits resulting from similar habitat features and environmental conditions, can significantly reduce the power of these discriminatory methods. We compared data on three life-history traits and polymorphism of DNA microsatellites for evidence of population subdivision among sockeye salmon spawning on spatially discrete but physically similar beaches on islands in Iliamna Lake, Alaska. We found small but significant differences in average body length, body depth and age composition between sites as well as significant interactions between site and year. These interactions, reflecting random variation in growth or recruitment among sites, are a powerful tool for discriminating populations with similar mean trait values. These results suggest fine-scale homing to natal sites, but the microsatellite data revealed no evidence of restricted gene flow among sites. There seems to be enough straying among the populations to prevent differentiation at neutral traits but enough homing for them to be functionally distinct.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available