4.4 Article

Size and shape of mineralites in young bovine bone measured by atomic force microscopy

Journal

CALCIFIED TISSUE INTERNATIONAL
Volume 72, Issue 5, Pages 592-598

Publisher

SPRINGER
DOI: 10.1007/s00223-002-1077-7

Keywords

AFM; bone; mineralite; apatite; collagen; hydroxyapatite

Funding

  1. NIAMS NIH HHS [T32-AR07112] Funding Source: Medline
  2. NIA NIH HHS [AG14701] Funding Source: Medline

Ask authors/readers for more resources

Atomic force microscopy (AFM) was used to obtain three-dimensional images of isolated mineralites extracted from young postnatal bovine bone. The mean mineralite size is 9 nm x 6 nm x 2.0 nm, significantly shorter and thicker than the mineralites of mature bovine bone measured by the same technique. Mineralites of the young postnatal bone can be accommodated within the hole zone regions of a quasi-hexagonally packed collagen fibril in the fashion described by Hodge [9] in which laterally adjacent hole zone regions form continuous channels across the diameter of a fibril for a distance of at least 10 nm. Deposition of mineralites of the size noted above in this void volume of the fibrils would result in little or no distortion of the collagen molecules or supramolecular structure of the collagen fibril. The new AFM data supporting this claim is consistent with findings obtained by electron microscopy and low-angle x-ray and neutron diffraction that mineralites formed within collagen fibrils during initial stages of calcification occur within the hole zone region. However, the deposition of additional mineralites in the intermolecular spaces between collagen molecules in the overlap region of the fibrils would significantly distort the fibrils since the space available between adjacent molecules is considerably less than even the smallest dimension of the mineralites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available