4.6 Article

Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome

Journal

PAIN
Volume 103, Issue 1-2, Pages 99-110

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1016/S0304-3959(02)00416-5

Keywords

functional magnetic resonance imaging; irritable bowel syndrome; visceral hypersensitivity; cutaneous hyperalgesia; central hyperexcitability

Ask authors/readers for more resources

We have previously shown that irritable bowel syndrome (IBS) patients have both visceral and cutaneous hyperalgesia. The neural mechanisms of these forms of hyperalgesia were further characterized by comparing cortical processing of both rectal distension (35, 55 mmHg) and cutaneous heat nociceptive stimuli (foot immersion in 45 and 47degreesC water bath) in IBS patients and in a group of healthy age/sex-matched controls. Our approach relied on functional magnetic resonance imaging neuroimaging analyses in which brain activation in age/sex-matched control subjects was subtracted from that found in IBS patients. These analyses revealed that both rectal distension and cutaneous heat stimuli evoked greater neural activity in several brain regions of IBS patients in comparison to age/sex-matched control subjects. These include those related to early stages of somatosensory processing (e.g. thalamus, somatosensory cortex) as well as those more related to cognitive and affective processing (insular, anterior cingulate, posterior cingulate, prefrontal cortex). Thus, our results support the hypothesis that hyperalgesia of IBS is manifested by increased somatosensory processing at all cortical levels. This was found to be the case not only for visceral hyperalgesia but also for cutaneous heat hyperalgesia, a likely form of secondary hyperalgesia. Furthermore, visceral and heat hyperalgesia. were accompanied by increased neural activity within the same brain structures. These results support the hypothesis that visceral and cutaneous hyperalgesia in IBS patients is related to increased afferent processing in pathways ascending to the brain rather than to selectively increased activity at higher cortical levels (e.g. limbic and frontal cortical areas). (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available