4.6 Article

Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1357-2725(02)00341-2

Keywords

muscle wasting; ubiquitin; proteasome; ubiquitin ligase; sepsis; cachexia; catabolism

Ask authors/readers for more resources

Muscle wasting during sepsis reflects increased expression and activity of the ubiquitin-proteasome proteolytic pathway and is at least in part mediated by glucocorticoids. The ubiquitination of proteins destined to be degraded by the proteasome is regulated by multiple enzymes, including ubiquitin ligases. We tested the hypothesis that sepsis upreplates the gene expression of the newly described ubiquitin ligases, MuRF1 and atrogin-1/MAFbx. Sepsis was induced in rats by cecal ligation and puncture. Control rats were sham-operated. In some experiments, rats were treated with the glucocorticoid receptor antagonist RU 38486 before induction of sepsis. At various time points after induction of sepsis, mRNA levels for MuRF1 and atrogin-1/MAFbx were determined in extensor digitorum longus muscles by real-time PCR. Sepsis resulted in a 10-16-fold increase in gene expression of the ubiquitin ligases studied here. These changes were much greater than those observed previously for another ubiquitin ligase, E3alpha, in muscle during sepsis. Treatment of rats with RU 38486 prevented the sepsis-induced increase in mRNA levels for MuRF1 and atrogin-1/MAFbx, suggesting that glucocorticoids participate in the upregulation of these genes in muscle during sepsis. The present results lend further support to the concept that the ubiquitin-proteasome pathway plays an important role in sepsis-induced muscle proteolysis and suggest that multiple ubiquitin ligases may participate in the development of muscle wasting during sepsis. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available