4.6 Article

Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00376.2002

Keywords

lipopolysaccharide; intestinal obstruction; intraluminal pressure

Ask authors/readers for more resources

Because few previous studies have investigated the mechanisms of endotoxin translocation induced by intestinal obstruction, we aimed to clarify whether or not serotonin [5-hydroxytryptamine (5-HT)], which is released from enterochromaffin (EC) cells, is responsible for alterations of the mucosal permeability to endotoxin and to identify the 5-HT receptor subtypes that mediate this action. FITC-labeled LPS (FITC-LPS) was injected into the ileum of rats, and the FITC-LPS level in the superior mesenteric vein was subsequently measured by using a fluorescence spectrophotometer. To measure the 5-HT release induced by high intraluminal pressure, ex vivo preparation of vascularly and luminally perfused rat ileum was used. Results demonstrated that elevated intraluminal pressure stimulates the translocation of FITC-LPS and the release of 5-HT from the EC cells into the intestinal lumen but not into the portal circulation. This FITC-LPS translocation, which was stimulated by exogenously applied 5-HT in the lumen and the jugular vein, was inhibited by 5-HT3 receptor antagonist administration both intaluminally and intravenously. The stimulatory effect of elevated intraluminal pressure on the translocation of FITC-LPS was inhibited by the intraluminal and intravenous administration of 5-HT3 receptor antagonist. These results suggest that 5-HT released from EC cells may be involved in the translocation of FITC-LPS induced by elevated intraluminal pressure and that this effect is mediated by 5-HT3 receptors that may be located in the intestinal epithelium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available