4.6 Article

Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 162, Issue 5, Pages 1639-1650

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)64298-8

Keywords

-

Categories

Ask authors/readers for more resources

Evidence has shown that excitotoxicity may contribute to the loss of central nervous system axons and oligodendrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Because dendrites and synapses are vulnerable to excitotoxicity, we examined these structures in acute and chronic models of EAE. Immunostaining for microtubule-associated protein-2 showed that extensive dendritic beading occurred in the white matter of the lumbosacral spinal cord (LSSC) during acute EAE episodes and EAE relapses. Retrograde labeling confirmed that most motoneuron dendrites were beaded in the white matter of the LSSC in acute EAE. In contrast, only mild swelling was observed in the gray matter of the LSSC. Dendritic beading showed marked recovery during EAE remission and after EAE recovery. In addition, synaptophysin, synapsin I, and PSD-95 immunoreactivities were significantly reduced in both the gray and white matter of the LSSC during acute EAE episodes and EAE relapses, but showed partial recovery during EAE remission and after EAE recovery. Pathologically, both dendritic beading and the reduction in synaptic protein immunoreactivity were well correlated with inflammatory cell infiltration in the LSSC at different EAE stages. We propose that dendritic and synaptic damage in the spinal cord may contribute to the neurological delcits in EAE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available