4.7 Article

The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 328, Issue 3, Pages 669-681

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00311-5

Keywords

hexosaminidase; Sandhoff disease; X-ray crystal structure; sphingolipid metabolism; HEXB

Ask authors/readers for more resources

Human lysosomal beta-hexosaminidases are dimeric enzymes composed of alpha and beta-chains, encoded by the genes HEXA and HEXB. They occur in three isoforms, the homodimeric hexosaminidases B (betabeta) and S (alphaalpha), and the heterodimeric hexosaminidase A (alphabeta), where dimerization is required for catalytic activity. Allelic variations in the HEXA and HEXB genes cause the fatal inborn errors of metabolism Tay-Sachs disease and Sandhoff disease, respectively. Here, we present the crystal structure of a complex of human beta-hexosaminidase B with a transition state analogue inhibitor at 2.3 Angstrom resolution (pdb 1o7a). On the basis of this structure and previous studies on related enzymes, a retaining double-displacement mechanism for glycosyl hydrolysis by beta-hexosaminidase B is proposed. In the dimer structure, which is derived from an analysis of crystal packing, most of the mutations causing late-onset,Sandhoff disease reside near the dimer interface and are proposed to interfere with correct dimer formation. The structure reported here is a valid template also for the dimeric structures of beta-hexosaminidase A and S. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available