4.7 Article

Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity

Journal

LIFE SCIENCES
Volume 72, Issue 24, Pages 2741-2750

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0024-3205(03)00179-6

Keywords

resveratrol; guinea pigs; DT-diaphorase; catalase; menadione; cardiotoxicity

Ask authors/readers for more resources

Resveratrol (3,4,5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine. It has antioxidant and antiproliferative activities, and has been shown to induce NAD(P)H:quinone oxidoreductase, also known as DT-diaphorase, in cultured mouse hepatoma cells. DT-diaphorase is a detoxifying enzyme for quinone-containing substances, due to its ability to prevent their one-electron reduction and the consequent generation of reactive oxygen species (ROS). The aim of the present study was to investigate whether oral administration of trans-resveratrol to guinea pigs (60 mg/l in tap water for 16 days, ad libitum) increases cardiac DT-diaphorase and, consequently, reduces the response of isolated atria to 2-methyl-1,4-naphthoquinone (menadione), the positive inotropic effect of which is related to the amount of ROS generated by its cardiac metabolism. In the cardiac tissue of resveratrol-treated animals, DT-diaphorase activity was significantly higher than that measured in control animals, the V-max of the enzyme reaction being 75.47 +/- 3.87 and 50.73 +/- 0.63 nmoles/mg protein/min, respectively (p < 0.05). Resveratrol administration also significantly increased the activity of cardiac catalase (32.20 +/- 2.39 vs. 25.14 +/- 3.85 units/mg protein in treated and control animals, respectively; p < 0.001). As a consequence, menadione metabolism by the cardiac homogenate obtained from resveratrol-treated animals generated a smaller amount of ROS and, in electrically driven left atria, menadione produced a significantly lower increase in the force of contraction than in atria isolated from control animals. These results indicate that oral administration of resveratrol exerts cardioprotection against ROS-mediated menadione toxicity. (C) 2003 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available