4.6 Article

CpG oligodeoxynucleotides modulate the osteoclastogenic activity of osteoblasts via toll-like receptor 9

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 19, Pages 16732-16740

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M212473200

Keywords

-

Ask authors/readers for more resources

Regulation of osteoclastogenesis by lipopolysaccharide (LPS) is mediated via its interactions with toll-like receptor 4 (TLR4) on both osteoclast-and osteoblast-lineage cells. We have recently demonstrated that CpG oligodeoxynucleotides (CpG ODNs), known to mimic bacterial DNA, modulate osteoclastogenesis via interactions with osteoclast precursors. In the present study we characterize the interactions of CpG ODNs with osteoblasts, in comparison with LPS. We find that, similar to LPS, CpG ODNs modulate osteoclastogenesis in bone marrow cell/osteoblast co-cultures, although in a somewhat different pattern. Osteoblasts express receptors for both LPS and CpG ODN (TLR4 and TLR9, respectively). The osteoblastic TLR9 transmits signals into the cell as demonstrated by NFkappaB activation as well as by extracellular-regulated kinase (ERK) and p38 phosphorylation. Similar to LPS, CpG ODN increases in osteoblasts the expression of tumor necrosis factor (TNF)-alpha and macrophage-colony stimulating factor (M-CSF). The two TLR ligands do not affect osteoprotegerin expression in osteoblasts. CpG ODN does not significantly affect receptor activator of NFkappaB ligand (RANKL) expression, in contrast to LPS, which induces the expression of this molecule. In the co-cultures CpG ODN induces RANKL expression in osteoblasts as a result of the more efficient TNF-alpha induction. CpG ODN activity (modulation of osteoclastogenesis, gene expression, ERK and p38 phosphorylation, and nuclear translocation of NFkappaB) is specific, because the control oligodeoxynucleotide, not containing CpG, is inactive. Furthermore, these effects (unlike the LPS effects) are inhibited by chloroquine, suggesting a requirement for endosomal maturation/acidification, the classic CpG ODN mode of action. We conclude that CpG ODN, upon TLR9 ligation, induces osteoblasts osteoclastogenic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available