4.6 Article

The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 19, Pages 17121-17129

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M212590200

Keywords

-

Ask authors/readers for more resources

Fibroblast growth factor (FGF) signaling begins with the formation of a ternary complex of FGF, FGF receptor (FGFR), and heparan sulfate (HS). Multiple models have been proposed for the ternary complex. However, major discrepancies exist among those models, and none of these models have evaluated the functional importance of the interacting regions on the HS chains. To resolve the discrepancies, we measured the size and molar ratio of HS in the complex and showed that both FGF1 and FGFR1 simultaneously interact with HS; therefore, a model of 2:2:2 FGF1.HS.FGFR1 was shown to fit the data. Using genetic and biochemical methods, we generated HSs that were defective in FGF1 and/or FGFR1 binding but could form the signaling ternary complex. Both genetically and chemically modified HSs were subsequently assessed in a BaF3 cell mitogenic activity assay. The ability of HS to support the ternary complex formation was found to be required for FGF1-stimulated cell proliferation. Our data also proved that specific critical groups and sites on HS support complex formation. Furthermore, the molar ratio of HS, FGF1, and FGFR1 in the ternary complex was found to be independent of the size of HS, which indicates that the selected model can take place on the cell surface proteoglycans. Finally, a mechanism for the FGF.FGFR signaling complex formation on cell membrane was proposed, where FGF and FGFR have their own binding sites on HS and a distinct ternary complex formation site is directly responsible for mitogenic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available