4.8 Article

GC analysis of human breath with a series-coupled column ensemble and a multibed sorption trap

Journal

ANALYTICAL CHEMISTRY
Volume 75, Issue 10, Pages 2231-2236

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac020725g

Keywords

-

Funding

  1. NIOSH CDC HHS [R01-OH03692] Funding Source: Medline

Ask authors/readers for more resources

The combination of a tandem column ensemble and an on-line microsorption trap is used for the analysis of organic compounds in human breath samples. The four-bed sorption trap uses a series of discreet sorption beds containing three grades of graphitized carbon and a carbon molecular sieve to quantitatively remove most organic compounds from 0.8-L breath samples. The trap is then heated to 300 degreesC in similar to 1.5 s and maintained at this temperature for 10 s. The resulting vapor plug width is in the range 0.7-1.3 s for the compounds found in the breath samples. The separation is performed with a 15-m-long, 0.25-mm-i.d. capillary using a 0.5-mum-thick film of nonpolar dimethyl polysiloxane coupled in series to a polar column, either trifluoropropylmethyl polysiloxane or poly(ethylene glycol). Both column combinations are successful in separating the early-eluting compounds acetone, isoprene, pentane, methyl alcohol, and ethyl alcohol, which are all common in breath samples. The poly(ethylene glycol) combination gave better separation but showed relatively fast deterioration for repeated analysis of wet samples. Breath samples were obtained under different conditions (smoker, nonsmoker, gum chewer), and 25 compounds were identified in the various samples. Many additional peaks are observed but not identified. Analytical curves (log-log) of peak area versus sample volume for test compounds are linear in the range 80-800 cm(3). Detection limits (3sigma) for several volatile compounds in 800-cm(3) samples are in the 1-5 ppb range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available