4.7 Article

Intralysosomal iron: A major determinant of oxidant-induced cell death

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 34, Issue 10, Pages 1243-1252

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0891-5849(03)00109-6

Keywords

apoptosis; autophagocytosis; iron; lysosomes; oxidative stress; free radicals

Funding

  1. NIDDK NIH HHS [DK58882] Funding Source: Medline

Ask authors/readers for more resources

As a result of continuous digestion of iron-containing metalloproteins, the lysosomes within normal cells contain a pool of labile, redox-active, low-molecular-weight iron, which may make these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes with release of hydrolytic enzymes into the cell cytoplasm can lead to a cascade of events eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult). To assess the importance of the intralysosomal pool of redox-active iron, we have temporarily blocked lysosomal digestion by exposing cells to the lysosomotropic alkalinizing agent, ammonium chloride (NH4Cl). The consequent increase in lysosomal pH (from ca. 4.5 to >6) inhibits intralysosomal proteolysis and, hence, the continuous flow of reactive iron into this pool. Preincubation of J774 cells with 10 mM NH4Cl for 4 It dramatically decreased apoptotic death caused by subsequent exposure to H2O2, and the protection was as great as that afforded by the powerful iron chelator, desferrioxamine (which probably localizes predominantly in the lysosomal compartment). Sulfide-silver cytochemical detection of iron revealed a pronounced decrease in lysosomal content of redox-active iron after NH4Cl exposure, probably due to diminished intralysosomal digestion of iron-containing material coupled with continuing iron export from this organelle. Electron paramagnetic resonance experiments revealed that hydroxyl radical formation, readily detectable in control cells following H2O2 addition, was absent in cells preexposed to 10 mM NH4Cl. Thus, the major pool of redox-active, low-molecular-weight iron may be located within the lysosomes. In a number of clinical situations, pharmacologic strategies that minimize the amount or reactivity of intralysosomal iron should be effective in preventing oxidant-induced cell death. (C) 2003 Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available