4.6 Article

Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 20, Pages 18538-18543

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205246200

Keywords

-

Ask authors/readers for more resources

Septins are a family of conserved proteins implicated in a variety of cellular functions such as cytokinesis and vesicle trafficking, but their properties and modes of action are largely unknown. Here we now report findings of immunocytochemical and biochemical characterization of a mammalian septin, MSF-A. Using an antibody specific for MSF subfamily proteins, MSF-A was found to be expressed predominantly in mammary human mammary epithelial cells (HMEC). MSF-A was associated with microtubules in interphase HMEC cells as it localized with the mitotic spindle and the bundle of microtubule at midzone during mitosis. Biochemical analysis revealed direct binding of MSF-A with polymerized tubulin through its central region containing guanine nucleotide-interactive motifs. GTPase activity, however, was not required for the association. Conditions that disrupt the microtubule network also disrupted the MSF-A-containing filament structure, resulting in a punctate cytoplasmic pattern. Depletion of MSF-A using small interfering RNAs caused incomplete cell division and resulted in the accumulation of binucleated cells. Unlike Nedd5, an MSF mutant deficient in GTPase activity forms filament indistinguishable from that of the wild type in COS cells. These results strongly suggest that septin filaments may interact not only with actin filaments but also with microtubule networks and that GTPase activity of MSF-A is not indispensable to incorporation of MSF-A into septin filaments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available