4.7 Article

Observations of water masers and radio continuum emission in AFGL 2591

Journal

ASTROPHYSICAL JOURNAL
Volume 589, Issue 1, Pages 386-396

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/374618

Keywords

HII regions; ISM : individual (AFGL 2591); ISM : jets and outflows; masers; stars : formation

Ask authors/readers for more resources

We report results of continuum (1.3 and 3.6 cm) and H2O maser line high angular resolution observations, made with the Very Large Array (VLA) in the A configuration, toward the star-forming region AFGL 2591. Three radio continuum sources (VLA 1, VLA 2, and VLA 3) were detected in the region at 3.6 cm, and one source (VLA 3) at 1.3 cm. VLA 1 and VLA 2 appear resolved and their spectral indices suggest free-free emission from optically thin H II regions. VLA 3 is elongated in the east-west direction, along the axis of the bipolar molecular outflow observed in the region. Its spectral energy distribution is consistent with it being a similar to200 AU optically thick disk plus a photoionized wind. In addition, we detected 85 water maser spots toward the AFGL 2591 region, which are distributed in three main clusters. Two of these clusters are spatially associated with VLA 2 and VLA 3, respectively. The third cluster of masers, including the strongest water maser of the region, does not coincide with any known continuum source. We suggest that this third cluster of masers is excited by an undetected protostar that we predict to be located similar or equal to0.5 (500 AU) north from VLA 3. The maser spots associated with VLA 3 are distributed along a shell-like structure of 0.01 size, showing a peculiar velocity-position helical distribution. We propose that VLA 3 is the powering source of the observed molecular outflow in this region. Finally, we support the notion that the AFGL 2591 region is a cluster of B0-B3 type stars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available