4.7 Article

Impact of a deep ozone hole on Southern Ocean primary production

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 108, Issue C5, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001JC001226

Keywords

ozone; UV-inhibition; Antarctic; phytoplankton production; modeling remote sensing

Categories

Ask authors/readers for more resources

[1] Field studies show that photosynthesis by Antarctic phytoplankton is inhibited by the increased ultraviolet radiation (UVR) resulting from springtime stratospheric ozone (O-3) depletion. To extend previous observations, a numerical model utilizing satellite-derived distributions of O-3, clouds, sea ice, surface temperature, and phytoplankton biomass was developed to study the hemispheric-scale seasonal effects of a deep Antarctic O-3 hole on primary production in the Southern Ocean. UVR-induced losses of surface phytoplankton production were substantial under all O-3 conditions, mostly due to UVA. However, when integrated to the 0.1% light depth, the loss of primary production resulting from enhanced fluxes of UVB due to O-3 depletion was <0.25%. The loss of primary production is minimized by the strong attenuation of UVR within the water column and by sea ice which is at its peak extent at the time of the most severe O-3 depletion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available