4.7 Article

Common and Distinctive Pathogenetic Features of Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia 1 and Hereditary Hemorrhagic Telangiectasia 2 Animal Models-Brief Report

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 34, Issue 10, Pages 2232-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.114.303984

Keywords

Alk1 protein, mouse; arteriovenous malformations; endoglin protein, mouse; endothelial cells; myocytes, smooth muscle; telangiectasia, hereditary hemorrhagic

Funding

  1. National Institutes of Health [HL64024]
  2. American Heart Association [12POST12030005]
  3. National Institute of Diabetes and Digestive and Kidney Diseases
  4. British Heart Foundation [RG/12/2/29416] Funding Source: researchfish

Ask authors/readers for more resources

Objective-Hereditary hemorrhagic telangiectasia is a genetic disorder characterized by visceral and mucocutaneous arteriovenous malformations (AVMs). Clinically indistinguishable hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 are caused by mutations in ENG and ALK1, respectively. In this study, we have compared the development of visceral and mucocutaneous AVMs in adult stages between Eng- and Alk1-inducible knockout (iKO) models. Approach and Results-Eng or Alk1 were deleted from either vascular endothelial cells (ECs) or smooth muscle cells in adult stages using Scl-CreER and Myh11-CreER lines, respectively. Latex perfusion and intravital spectral imaging in a dorsal skinfold window chamber system were used to visualize remodeling vasculature during AVM formation. Global Eng deletion resulted in lethality with visceral AVMs and wound-induced skin AVMs. Deletion of Alk1 or Eng in ECs, but not in smooth muscle cells, resulted in wound-induced skin AVMs. Visceral AVMs were observed in EC-specific Alk1-iKO but not in Eng-iKO. Intravital spectral imaging revealed that Eng-iKO model exhibited more dynamic processes for AVM development when compared with Alk1-iKO model. Conclusions-Both Alk1- and Eng-deficient models require a secondary insult, such as wounding, and ECs are the primary cell type responsible for the pathogenesis. However, Alk1 but not Eng deletion in ECs results in visceral AVMs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available