4.8 Article

Selectivity in vibrationally mediated single-molecule chemistry

Journal

NATURE
Volume 423, Issue 6939, Pages 525-528

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01649

Keywords

-

Ask authors/readers for more resources

The selective excitation of molecular vibrations provides a means to directly influence the speed and outcome of chemical reactions. Such mode-selective chemistry(1) has traditionally used laser pulses to prepare reactants in specific vibrational states(2) to enhance reactivity(3,4) or modify the distribution of product species(5,6). Inelastic tunnelling electrons may also excite molecular vibrations(7,8) and have been used to that effect on adsorbed molecules, to cleave individual chemical bonds(9) and induce molecular motion(10-13) or dissociation(14-17). Here we demonstrate that inelastic tunnelling electrons can be tuned to induce selectively either the translation or desorption of individual ammonia molecules on a Cu(100) surface. We are able to select a particular reaction pathway by adjusting the electronic tunnelling current and energy during the reaction induction such that we activate either the stretching vibration of ammonia or the inversion of its pyramidal structure. Our results illustrate the ability of the scanning tunnelling microscope to probe single-molecule events in the limit of very low yield and very low power irradiation, which should allow the investigation of reaction pathways not readily amenable to study by more conventional approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available