4.7 Article

Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands -: art. no. 1058

Journal

GLOBAL BIOGEOCHEMICAL CYCLES
Volume 17, Issue 2, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2002GB001966

Keywords

sulfate reduction; methanogenesis; carbon-dioxide; Sphagnumpeatlands; carbon budget

Ask authors/readers for more resources

[1] Peatlands represent large carbon (C) reservoirs that can act as a source or sink for greenhouse gases. The response of peatland gaseous C fluxes to global climate change and atmospheric sulfate deposition, however, remains uncertain. Methanogenesis is thought to be one of the most important anaerobic C mineralization pathways in peatlands, especially in regions where input of sulfate from acid deposition is low. However, sulfate reduction has been quantified rarely in freshwater wetlands. Here we report greater anaerobic C flow through sulfate reduction than through methanogenesis at all sites situated along a global atmospheric sulfur deposition gradient. Stoichiometric mass balance suggests that fermentation is a dominant anaerobic C mineralization pathway in unpolluted peatlands, while methanogenesis contributed minimally to total anaerobic carbon mineralization in these sites. Furthermore, global increases of atmospheric sulfur deposition minimize the impacts of climatic warming by simultaneously decreasing rates of methanogenesis while causing little change in rates of total anaerobic C mineralization in Sphagnum-dominated peatlands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available