4.6 Article

Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 22, Pages 20140-20153

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M301436200

Keywords

-

Ask authors/readers for more resources

Secretory IgA (SIgA) is a multi-polypeptide complex consisting of a secretory component (SC) covalently attached to dimeric IgA containing one joining (J) chain. We present the analysis of both the N- and O-glycans on the individual peptides from this complex. Based on these data, we have constructed a molecular model of SIgA1 with all its glycans, in which the Fab arms form a T shape and the SC is wrapped around the heavy chains. The O-glycan regions on the heavy (H) chains and the SC N- glycans have adhesin-binding glycan epitopes including galactose-linked beta1-4 and beta1-3 to GlcNAc, fucose-linked alpha1-3 and alpha1-4 to GlcNAc and alpha1-2 to galactose, and alpha2-3 and alpha2-6-linked sialic acids. These glycan epitopes provide SIgA with further bacteria-binding sites in addition to the four Fab-binding sites, thus enabling SIgA to participate in both innate and adaptive immunity. We also show that the N- glycans on the H chains of both SIgA1 and SIgA2 present terminal GlcNAc and mannose residues that are normally masked by SC, but that can be unmasked and recognized by mannose-binding lectin, by disrupting the SC-H chain noncovalent interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available