4.7 Article

Photodynamic Therapy Using a Protease-Mediated Theranostic Agent Reduces Cathepsin-B Activity in Mouse Atheromata In Vivo

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.113.301290

Keywords

atherosclerosis; cathepsin-B; molecular imaging; photodynamic therapy; photosensitizer; protease-mediated theranostic agent

Funding

  1. Korean Ministry for Health, Welfare and Family Affairs [A084274, A120099]
  2. Korea Health Promotion Institute [A084274] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Objective-To investigate whether an intravenously injected cathepsin-B activatable theranostic agent (L-SR15) would be cleaved in and release a fluorescent agent (chlorin-e6) in mouse atheromata, allowing both the diagnostic visualization and therapeutic application of these fluorophores as photosensitizers during photodynamic therapy to attenuate plaque-destabilizing cathepsin-B activity by selectively eliminating macrophages. Approach and Results-Thirty-week-old apolipoprotein E knock-out mice (n=15) received intravenous injection of L-SR15 theranostic agent, control agent D-SR16, or saline 3x (D0, D7, D14). Twenty-four hours after each injection, the bilateral carotid arteries were exposed, and Cy5.5 near-infrared fluorescent imaging was performed. Fluorescent signal progressively accumulated in the atheromata of the L-SR15 group animals only, indicating that photosensitizers had been released from the theranostic agent and were accumulating in the plaque. After each imaging session, photodynamic therapy was applied with a continuous-wave diode-laser. Additional near-infrared fluorescent imaging at a longer wavelength (Cy7) with a cathepsin-B-sensing activatable molecular imaging agent showed attenuation of cathepsin-B-related signal in the L-SR15 group. Histological studies demonstrated that L-SR15-based photodynamic therapy decreased macrophage infiltration by inducing apoptosis without significantly affecting plaque size or smooth muscle cell numbers. Toxicity studies (n=24) showed that marked erythematous skin lesion was generated in C57/BL6 mice at 24 hours after intravenous injection of free chlorin-e6 and ultraviolet light irradiation; however, L-SR15 or saline did not cause cutaneous phototoxicity beyond that expected of ultraviolet irradiation alone, neither did we observe systemic toxicity or neurobehavioral changes. Conclusions-This is the first study showing that macrophage-secreted cathepsin-B activity in atheromata could be attenuated by photodynamic therapy using a protease-mediated theranostic agent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available