4.7 Article

Site-Specific MicroRNA-92a Regulation of Kruppel-Like Factors 4 and 2 in Atherosusceptible Endothelium

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 32, Issue 4, Pages 979-U303

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.111.244053

Keywords

atherosusceptibility; endothelium in vivo; KLF2; KLF4; miR-92a

Funding

  1. National Institutes of Health [P01-HL62250, K99-HL103789]
  2. American Heart Association [11BGIA7080012]

Ask authors/readers for more resources

Objective-Endothelial transcription factors Kruppel-like factor 4 (KLF4) and KLF2 are implicated in protection against atherogenesis. Steady-state microRNA (miR) regulation of KLFs in vivo is accessible by screening region-specific endothelial miRs and their targets. Methods and Results-A subset of differentially expressed endothelial miRs was identified in atherosusceptible versus protected regions of normal swine aorta. In silico analyses predicted highly conserved binding sites in the 3'-untranslated region (3'UTR) of KLF4 for 5 miRs of the subset (miR-26a, -26b, -29a, -92a, and -103) and a single binding site for a miR-92a complex in the 3'UTR of KLF2. Of these, only miR-92a knockdown and knock-in resulted in responses of KLF4 and KLF2 expression in human arterial endothelial cells. Dual luciferase reporter assays demonstrated functional interactions of miR-92a with full-length 3'UTR sequences of both KLFs and with the specific binding elements therein. Two evolutionarily conserved miR-92a sites in KLF4 3'UTR and 1 site in KLF2 3'UTR were functionally validated. Knockdown of miR-92a in vitro resulted in partial rescue from cytokine-induced proinflammatory marker expression (monocyte chemotactic protein 1, vascular cell adhesion molecule-1, E-selectin, and endothelial nitric oxide synthase) that was attributable to enhanced KLF4 expression. Leukocyte-human arterial endothelial cell adhesion experiments supported this conclusion. In swine aortic arch endothelium, a site of atherosusceptibility where miR-92a expression was elevated, both KLFs were expressed at low levels relative to protected thoracic aorta. Conclusion-miR-92a coregulates KLF4 and KLF2 expression in arterial endothelium and contributes to phenotype heterogeneity associated with regional atherosusceptibility and protection in vivo. (Arterioscler Thromb Vasc Biol. 2012; 32: 979-987.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available