4.7 Article

Mast Cells Induce Vascular Smooth Muscle Cell Apoptosis via a Toll-Like Receptor 4 Activation Pathway

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 32, Issue 8, Pages 1960-1969

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.112.250605

Keywords

apoptosis; mast cell; toll-like receptor 4; vascular smooth muscle cell; vulnerable plaque

Ask authors/readers for more resources

Objective-Activated mast cells (MCs) release chymase, which can induce vascular smooth muscle cell (VSMC) apoptosis leading to plaque destabilization. Because the mechanism through which MCs release chymase in atherosclerosis is unknown, we studied whether MC-associated VSMC apoptosis is regulated by toll-like receptor 4 (TLR4) signaling. Methods and Results-Local recruitment and activation of MCs reduced VSMC content specifically in the cap region of vulnerable plaques in apolipoprotein E knockout mice. Cotreatment with the TLR4 antagonist Bartonella quintana lipopolysaccharide prevented this VSMC loss, suggesting an important role for TLR4 signaling in MC-induced VSMC apoptosis. Coculture of VSMCs with MCs activated by the TLR4 agonist Escherichia coli lipopolysaccharide increased VSMC apoptosis. Apoptosis was inhibited by TLR4 and chymase blockers, indicating that TLR4 signaling is involved in chymase release in MCs. This pathway was mediated via interleukin-6 because interleukin-6 promoted MC-associated VSMC apoptosis, which was inhibited by blocking chymase release. In addition, TLR4 activation in MCs induced interleukin-6 production, which was reduced by preincubation with either B. quintana lipopolysaccharide or an anti-TLR4 antibody. Conclusion-We show that MCs promote VSMC apoptosis in vivo. In addition, TLR4 signaling is important in chymase release in MCs and, therefore, in plaque destabilization by regulating VSMC apoptosis. (Arterioscler Thromb Vasc Biol. 2012;32:1960-1969.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available