4.6 Article

Time-dependent platelet-vessel wall interactions induced by intestinal ischemia-reperfusion

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00457.2002

Keywords

postcapillary venules; cell adhesion molecules; endothelial cells; inflammation; P-selectin

Funding

  1. NHLBI NIH HHS [HL-26441] Funding Source: Medline

Ask authors/readers for more resources

Platelets roll and adhere in venules exposed to ischemia-reperfusion (I/R). This platelet-endothelial adhesion may influence leukocyte trafficking because platelet depletion decreases I/R-induced leukocyte emigration. The objectives of this study were 1) to assess the time course of platelet adhesion in the small bowel after I/R and 2) to determine the roles of endothelial and/or platelet P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) in this adhesion. The adhesion of fluorescently labeled platelets was monitored by intravital microscopy in postcapillary venules exposed to 45 min of ischemia and up to 8 h of reperfusion. Peak platelet adhesion was observed at 4 h of reperfusion. To assess the contributions of platelet and endothelial cell P-selectin, platelets from P-selectin-deficient and wild-type mice were infused into wildtype and P-selectin-deficient mice, respectively. Platelets deficient in P-selectin exhibited low levels of adhesion comparable to that in sham-treated animals. In the absence of endothelial P-selectin, platelet adhesion was reduced by 65%. Treatment with a blocking antibody against PSGL-1 reduced adhesion by 57%. These results indicate that I/R induces a time-dependent platelet-endothelial adhesion response in postcapillary venules via a mechanism that involves PSGL-1 and both platelet and endothelial P-selectin, with platelet P-selectin playing a greater role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available