4.7 Article

MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 30, Issue 6, Pages 1118-U80

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.109.200873

Keywords

contractile proteins; molecular biology; vascular biology; vascular muscle

Funding

  1. National Institute of Health [R01-HL064793, R01-HL061371, R01-HL081190, R01-HL096670, P01-HL70295, N01-HV-28186, HL62572, HL091168]
  2. Swedish Research Council
  3. Swedish Heart Lung Foundation
  4. American Heart Association

Ask authors/readers for more resources

Objective-Regulation of vascular smooth muscle (VSM) proliferation and contractile differentiation is an important factor in vascular development and subsequent cardiovascular diseases. Recently, microRNAs (miRNAs) have been shown to regulate fundamental cellular processes in a number of cell types, but the integrated role of miRNAs in VSM in blood vessels is unknown. Here, we investigated the role of miRNAs in VSM by deleting the rate-limiting enzyme in miRNA synthesis, Dicer. Methods and Results-Deletion of Dicer in VSM results in late embryonic lethality at embryonic day 16 to 17, associated with extensive internal hemorrhage. The loss of VSM Dicer results in dilated, thin-walled blood vessels caused by a reduction in cellular proliferation. In addition, blood vessels from VSM-deleted Dicer mice exhibited impaired contractility because of a loss of contractile protein markers. We found this effect to be associated with a loss of actin stress fibers and partly rescued by overexpression of microRNA (miR)-145 or myocardin. Conclusion-Dicer-dependent miRNAs are important for VSM development and function by regulating proliferation and contractile differentiation. (Arterioscler Thromb Vasc Biol. 2010; 30: 1118-1126.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available