4.6 Article

Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts

Journal

JOURNAL OF NUTRITION
Volume 133, Issue 6, Pages 1913-1920

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jn/133.6.1913

Keywords

(n-3) fatty acids; docosahexaenoic acid; lipid rafts; T cell; sphingolipid

Funding

  1. NIDDK NIH HHS [DK 53055] Funding Source: Medline
  2. NIEHS NIH HHS [P30 ES 09106] Funding Source: Medline

Ask authors/readers for more resources

In vitro evidence indicates that (n-3) polyunsaturated fatty acids (PUFA) suppress T-cell activation in part by displacing proteins from lipid rafts, specialized regions within the plasma membrane that play an important role in T-cell signal transduction. However, the ability of (n-3) PUFA to influence membrane microdomains in vivo has not been examined to date. Therefore, we compared the effect of dietary (n-3) PUFA on raft (liquid ordered) vs. soluble (liquid disordered) microdomain phospholipid composition in mouse T cells. Mice were fed diets containing either 5 g/100 g corn oil (control) or 4 g/100 g fish oil [contains (n-3) PUFA] + 1 g/100 g corn oil for 14 d. Splenic T-cell lipid rafts were isolated by density gradient centrifugation. Raft sphingomyelin content (mol/100 mol) was decreased (P < 0.05) in T cells isolated from (n-3) PUFA-fed mice. Dietary (n-3) PUFA were selectively incorporated into T-cell raft and soluble membrane phospholipids. Phosphaticlylserine and glycerophosphoethanolamine, which are highly localized to the inner cytoplasmic leaflet, were enriched to a greater extent with unsaturated fatty acids compared with sphingomyelin, phosphatidylinositol and glycerophosphocholine. These data indicate for the first time that dietary (n-3) PUFA differentially modulate T-cell raft and soluble membrane phospholipid and fatty acyl composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available