4.7 Article

Flow Activation of AMP-Activated Protein Kinase in Vascular Endothelium Leads to Kruppel-Like Factor 2 Expression

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 29, Issue 11, Pages 1902-U465

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.109.193540

Keywords

shear stress; endothelial cells; KLF2; AMPK; eNOS

Funding

  1. National Institutes of Health Research [HL085195, HL080518, HL064382, HL77448, HL89940, HL76686]

Ask authors/readers for more resources

Objective-Vascular endothelial cells (ECs) confer atheroprotection at locations of the arterial tree where pulsatile laminar flow (PS) exists with a high shear stress and a large net forward direction. We investigated whether the PS-induced expression of the transcription factor Kruppel-Like Factor 2 (KLF2) in cultured ECs and its expression in the mouse aorta is regulated by AMP-activated protein kinase (AMPK). Methods and Results-AMPK inhibition by Compound C or siRNA had a significant blocking effect on the PS-induced KLF2 expression. The induction of KLF2 by PS led to the increase in eNOS and the suppression of ET-1, which could be reversed by KLF2 siRNA. In addition, PS induced the phosphorylation of ERK5 and MEF2 which are necessary for the KLF2 expression. These mechanotransduction events were abrogated by the blockade of AMPK. Furthermore, the phosphorylation levels of ERK5 and MEF2, as well as the expression of KLF2, were significantly reduced in the aorta of AMPK alpha 2 knockout mice when compared with wild-type control mice. Conclusion-The flow-mediated AMPK activation is a newly defined KLF2 regulatory pathway in vascular endothelium that acts via ERK5/MEF2. (Arterioscler Thromb Vasc Biol. 2009; 29: 1902-1908.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available