4.7 Article

Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense

Journal

FASEB JOURNAL
Volume 17, Issue 9, Pages 1502-+

Publisher

WILEY
DOI: 10.1096/fj.02-1104fje

Keywords

ThOx1 protein; ThOx2 protein; duox protein; lactoperoxidase; reactive oxygen species

Ask authors/readers for more resources

Lactoperoxidase (LPO) is an enzyme with antimicrobial properties present in saliva, milk, tears, and airway secretions. Although the formation of microbial oxidants by LPO has been recognized for some time, the source of hydrogen peroxide (H2O2) for LPO-catalyzed reactions remains unknown. Reactive oxygen species produced by the phagocyte NADPH oxidase (phox) play a critical role in host defense against pathogens; however, analogous oxidant-generating systems in other tissues have not been associated with antimicrobial activity. Several homologues of gp91(phox), the catalytic core of this enzyme, were described recently; dual oxidase (Duox)1/thyroid oxidase 1 and Duox2/thyroid oxidase 2 were identified in the thyroid gland and characterized as H2O2 donors for thyroxin biosynthesis. We examined Duox1 and Duox2 expression in secretory glands and on mucosal surfaces and give evidence for their presence and activity in salivary glands, rectum, trachea, and bronchium. Epithelium cells in salivary excretory ducts and rectal glands express Duox2, whereas tracheal and bronchial epithelial cells express Duox1. Furthermore, we detected Duox1-dependent H2O2 release by cultured human bronchial epithelial cells. Our observations suggest that Duox1 and Duox2 are novel H2O2 sources that can support LPO-mediated antimicrobial defense mechanisms on mucosal surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available