4.6 Article

Grain-size dependence of plastic deformation in nanocrystalline Fe

Journal

JOURNAL OF APPLIED PHYSICS
Volume 93, Issue 11, Pages 9282-9286

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1569035

Keywords

-

Ask authors/readers for more resources

Plastic deformation of nanocrystalline Fe was investigated by nanoindentation. Samples, synthesized by mechanical attrition, consisted of powder particles with diameters greater than 30 mum. The average grain diameters within the particles of different samples ranged from 10 nm to 10 mum. To avoid potential artifacts, samples were prepared without use of he at treatment, and measurements were conducted at a depth significantly smaller than the powder particle size. Corrections were made for the indentation-size effect and for pileup or sink in around the indent. The volume-averaged grain size was used in the analysis. The Hall-Petch relation is obeyed for grain sizes above about 18 nm, and slight softening occurs,at smaller grain sizes. The strain-rate sensitivity increases monotonically with decreasing grain size. The results are consistent with grain-boundary sliding. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available