4.7 Article

Coordination of groups of mobile autonomous agents using nearest neighbor rules

Journal

IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Volume 48, Issue 6, Pages 988-1001

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAC.2003.812781

Keywords

cooperative control; graph theory; infinite products; multiagent systems; switched systems

Ask authors/readers for more resources

In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its neighbors. In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available