4.7 Article

A new theory for polymer/solvent mixtures based on hard-sphere limit

Journal

EUROPEAN POLYMER JOURNAL
Volume 39, Issue 6, Pages 1141-1150

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0014-3057(02)00373-7

Keywords

hard-sphere; polymer/solvent mixture; hard-sphere limit; radius of gyration; excluded volume; interaction parameter; interchange energy

Ask authors/readers for more resources

Based on hard-sphere limit of binary mixtures with different molecular size of components a theory has been developed for calculating activities of solvents in polymer/solvent mixtures. The theory considers various chain configurations for polymer molecules, varying from extended chain to the coiled chain. According to this theory the activity of solvent can be calculated from molecular weights (MWs) and densities as the only input data. The only adjustable parameter in the calculations, is the hard-sphere diameter of polymer, which provides useful criteria for the judgement on the chain configuration of polymer. The activity calculations have been performed for seven binary mixtures of polymer/solvent and compared with experimental data at various temperatures and for a varying range of MWs of polymers. The solvents in the mixtures were both of polar and nonpolar natures. The activity calculations for the same systems were performed by the well-known Flory-Huggins theory. Comparing the results of calculations with those of Flory-Huggins theory indicates that, the proposed theory is able to predict the activities of the solvent with good accuracy. The radius of gyration, excluded volume and interaction parameter for polymer chain have been calculated using the parameter obtained in the new theory. The calculated interaction parameter in the new theory, is interpreted in terms of attraction, repulsion and interchange energy of polymer and solvent in the mixture. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available