4.6 Article

Low potassium dextran lung preservation solution reduces reactive oxygen species production

Journal

ANNALS OF THORACIC SURGERY
Volume 75, Issue 6, Pages 1705-1710

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0003-4975(03)00173-5

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL65322] Funding Source: Medline

Ask authors/readers for more resources

Background. Low potassium dextran lung preservation solution has reduced primary graft failure in animal and human studies. Though the mechanism of reducing primary graft failure is unknown, low potassium dextran differs most significantly from solutions such as Euro-Collins (EC) and University of Wisconsin in its potassium concentration. The aim of this study was to investigate the impact that potassium concentration in lung preservation solutions had on pulmonary arterial smooth muscle cell depolarization and production of reactive oxygen species. Methods. Using isolated pulmonary artery smooth muscle cells from Sprague-Dawley rats, the patch-clamp technique was used to measure resting cellular membrane potential and whole cell potassium current. Measurements were recorded at-base line and after exposure to low potassium dextran, EC, and University of Wisconsin solutions. Pulmonary arteries from rats were isolated from the main pulmonary artery to the fourth segmental branch. Arteries were placed into vials containing low potassium dextran, EC, low potassium EC, Celsior, and University of Wisconsin solutions with reactive oxygen species measured by lucigenin-enhanced chemiluminescence. Results. Pulmonary artery smooth muscle cell membrane potentials had a significant depolarization when placed in the University of Wisconsin or EC solutions, with changes probably related to inhibition of voltage-gated potassium channels. Low potassium dextran solution did not alter the membrane potential. Production of reactive oxygen species as measured by chemiluminescence was significantly higher when pulmonary arteries were exposed to University of Wisconsin or EC solutions (51,289 +/- 5,615 and 35,702 +/- 4353 counts/0.1 minute, respectively) compared with low potassium dextran, Celsior, and low potassium EC (12,537 +/- 3623, 13,717 +/- 3,844 and 15,187 +/- 3,792 counts/0.1 minute, respectively). Conclusions. Preservation solutions with high potassium concentration are clearly able to depolarize the pulmonary artery smooth muscle cells and increase pulmonary artery reactive oxygen species production. Low potassium preservations solutions may limit reactive oxygen species production and thus reduce the incidence of primary graft failure in lung transplantation. (Ann Thorac Surg 2003;75:1705-10) (C) 2003 by The Society of Thoracic Surgeons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available