3.8 Article

Controller design for a magnetically suspended milling spindle based on chatter stability analysis

Publisher

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/jsmec.46.416

Keywords

active magnetic bearing; controller design; end milling; chatter stability analysis; chatter free cutting

Ask authors/readers for more resources

The chatter stability of a rigid milling spindle levitated by five-axis active magnetic bearings (AMBs) is studied for its chatter free cutting, as the control gains of AMBs vary. The characteristic equation for regenerative chatter loop with a delay element is described by a linear differential-difference equation, accounting for the dynamics of the AMB controllers, the uncut chip thickness equation and the cutting process as well as the rigid spindle dynamics itself. An efficient chatters stability analysis method is, then proposed to predict the stability lobes and chatter frequency in milling. The analytically predicted stability lobes are found to be in good agreement with the lobes generated by other methods available in the literature. Using the proposed method, parametric study is also performed to investigate the influences of the damping and stiffness coefficients of AMBs on the chatter free cutting conditions, as they are allowed to vary within the stable region formed by the AMB-control gains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available